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ON THE USE OF REDUCIBLE POLYNOMIALS 
AS RANDOM NUMBER GENERATORS 

DAKAI WANG AND AALDERT COMPAGNER 

ABSTRACT. The randomness properties and the hierarchy of correlation coef- 
ficients are studied of approximate-maximum-length sequences, for which the 
characteristic polynomial is a product of several primitive polynomials. The 
randomness properties are almost the same as for maximum-length sequences 
characterized by a primitive polynomial with many terms and of the same de- 
gree. Reducible characteristic polynomials have acceptable figures of merit and 
can be of extremely high degree. Since they are also easily constructed and 
implemented, reducible polynomials are strong candidates for reliable random 
number generation, especially at the bit rates needed in large-scale Monte Carlo 
simulations. 

1. INTRODUCTION 

Methods for the generation of pseudorandom numbers have recently been 
reviewed by Knuth [9], Marsaglia [11], Ripley [1 5], James [8], and Nieder- 
reiter [13]. In this paper, the method based on shift register (or SR-) sequences 
is considered, because it may satisfy the most stringent requirements of very 
long period, uniform distribution, statistical independence of successive num- 
bers, and high speed. Most research on SR-sequences has been focussed on 
the use of primitive polynomials, since the resulting maximum-length (or M-) 
sequences have rather favorable properties. However, the primitive polynomi- 
als of high degree n that are available usually contain three terms only (see 
for instance the lists provided by Zierler and Brillhart [16, 17]). As discussed 
in earlier papers [3-5], these trinomials lead to third-order correlations over 
small distances and hence to a considerable amount of intrinsic structure in the 
resulting M-sequences, which were called 'ill-tempered'. Indeed, for primitive 
trinomials the figures of merit p(d), which as defined by Andre, Mullen, and 
Niederreiter [ 1 ] are a measure for the independence of the most significant parts 
of d subsequent strings of n bits taken from the sequence, are not acceptable, 
as they are much smaller than n . 

The search for so-called universally optimal primitive polynomials of a given 
degree, which have large figures of merit p0(d) for d = 2 to 5 simultaneously, 
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requires rather time-consuming computations. In [1], with very efficient proce- 
dures, results were obtained only up to degree n = 32; for higher degrees, up to 
n = 127, primitive polynomials that are optimal only with respect to po(2) have 
been reported [12]. However, the random numbers at bit rates > 1 GHz that 
are needed in large-scale Monte Carlo simulations have to be derived from char- 
acteristic polynomials with many terms and of degree n > 1000, or even much 
larger, in order to be reliable (a simple reason is that only n/32 subsequent 
pseudorandom numbers of 32 bits can be guaranteed to be fully independent). 
The resulting problem is circumvented when reducible polynomials are used 
instead of primitive ones [3, 4]. 

In this paper, it will be shown that the sequences generated by reducible poly- 
nomials obey the randomness properties formulated by Golomb [6] in almost 
the same way as M-sequences. The figures of merit for reducible polynomi- 
als will be discussed and compared with those for primitive polynomials, and 
the hierarchy of correlation coefficients for sequences derived from reducible 
polynomials will be examined. 

2. APPROXIMATE-MAXIMUM-LENGTH SEQUENCES 

An nth-degree SR-sequence is defined as a binary sequence {Yi} generated 
by a linear recursion 

(1) Yi+n=an-1Yi+n-1+ ?*+aoyj (mod2), i=0,1,..., 

where the coefficients aj are elements of F2 . The generalization to the Galois 
field Fp is straightforward. The characteristic polynomial associated with the 
recursion (1) is 

(2) f(x) = xn + anXn- + ? ?+ ao. 
The seed, which is the set of initial values Yo, Yi ... , Yn- , and the character- 
istic polynomial f(x) entirely determine the whole sequence {yi}. Formally, 
(1) can be rewritten as 

(3) 0 = yi + an-1Yi- I + . + aoyi-n = D-nf(D)yi, 
where D -I denotes the unit-delay operator obeying 

(4) D-'Yi = Yi-i - 

The smallest exponent N for which D-Nyi = yi holds for all i is the period 
of the sequence. When the polynomial f(x) is primitive, N is equal to 2n - 1 
and the SR-sequence is an M-sequence, initialized by nonzero seeds such as 

(, 0,..., 1). 
Consider m distinct primitive polynomials fj(x) for j = 1, ..., m. The 

number m is assumed to be small: m < 10 is enough for the applications we 
have in mind (see ?4). For each fj(x) the associated M-sequences obey 

(5) D fj(D)yi(') 0, 

and have periods 

(6) N1=2n,-1, j=1, 2,...,m, 

where nj denotes the degree of fj(x). The sequence {y,} with elements 

(7) =() + y(2) + ... + y(m) (mod 2), 



REDUCIBLE POLYNOMIALS AS RANDOM NUMBER GENERATORS 365 

where nonzero seeds are chosen for each of the partaking M-sequences, obeys 

(8) D- f(D)yj = D- f (D)(y)+ +y(M))= 0. 

Obviously, the reducible polynomial 

(9) f(x) = fJ(x)f2(x) fm (x) 

is a characteristic polynomial for the sequence {Yij . When the periods Nj are 
not only distinct but also mutually prime, the period of {yi} is 

m 

0 0) N = NN2. Nm = ](2 
n 1) <2n _ I 

j=1 

with 

(11) n n=l +fn2+ +fnm. 

If n >? 1 holds for j = 1, ... , m, the difference between N and 2n is 
relatively small. Hence, {yi} in (7) may be called an approximate-maximum- 
length (or AM-) sequence. 

3. RANDOMNESS PROPERTIES OF AM-SEQUENCES 

It is known (see, e.g., [10, Chapters 1 and 4]) that the set S(f(x)) of all 
sequences which satisfy the linear recursion (1) and which have a characteristic 
polynomial that is reducible as in (9), can be divided into families according to 
their minimal polynomials 

(12) fJk (x)= fj (x), 
jEJk 

where the ordered set 

(13) Jk = {il, ,ik}, 0 < k < m, 

of k different indices is chosen from the set Jm = { 1, 2, ... , m}. The fami- 
lies can be specified by Jk as F( Jk) . A sequence of this family can be obtained 
from (7) by choosing all-zero seeds for the sequences {y(j) } with i not belong- 
ing to Jk . The period of this sequence is 

(14) N(Jk)= fiNj, 
iEJk 

equal to the total number of different sequences in F (Jk), which are translated 
versions of one another. For a given k, there are (m) different sets Jk and 
families F(Jk), adding to 2m families in total. The sum of N(Jk) over all 
families gives the total number of sequences in S(f(x)), 

m m m 

(15) Z Z N(Jk) = J7(Nj + 1) = fI 2ni = 2n. 
k=O Jk j=1 j=1 

The family F(Jo) consists of only one sequence, the all-zero sequence with 
period 1, and the family F(Jm) contains the N(Jm) = N translationally equiv- 
alent AM-sequences we are interested in. 

One may distinguish N(Jk) different states, each of which consists of n suc- 
cessive bits, in a sequence of family F(Jk). The total number of states in all 
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sequences of S(f(x)) is 2n, each of all possible strings of n bits appearing 
exactly once. Specifying a bit string of length t < n, one finds that the number 
of states which have the specified string as their t leading bits is 2n-t . There- 
fore, if Rt(Jk) denotes the number of those states in a period of a sequence 
belonging to F(Jm), then we have 

m 

(16) ZZ Rt(Jk) = 2 
k=O Jk 

Consider the three randomness properties RI, R2, and R3 of M-sequences 
that were introduced by Golomb [6, Chapter III] (see also Hoffmann de Visme 
[7, Chapter 8]). The first property, RI, expresses that the total number of O's in 
one period of any M-sequence is only one less than the total number of l's. An 
equivalent result is easily found for AM-sequences. Putting t = 1 and taking 0 
as the specified bit, one gets the number of O's in the AM-sequence to be 

rn-i 
( 1 7) R(?) (Jm) = 2n1 -E E R() (Jk). 

k=O Jk 

The difference between this number and R(1)(Jm), the corresponding number 
for the case that the specified bit is 1, obeys 

m-l 

A(Jm) = - EA(Jk). 
k=O Jk 

Suppose that A(Jk) = (I)k holds for k = 0, 1, ..., m - 1; then one has 

rn-i 

( 18) A(J ) E m) (_1 )k =(_1 )m 
k=O 

Since this is obviously true for m = 0 (all-zero sequence) and m = 1 (M- 
sequence), it is true for any m by induction. Hence, the difference between an 
AM-sequence and an M-sequence with respect to R1 is trivial. It may be noted 
that in the context of algebraic coding theory a result equivalent to (18) was 
earlier obtained by Niederreiter [14]. 

Randomness property R2 concerns the number of runs of O's and l's, which 
again can be counted by (16). For instance, taking the specified bits to be 
* = t - 2 ones sandwiched between two zeros, one finds the number of runs of 
* ones in a period of an AM-sequence to be 

m-i 
(19) Rv+2(J) 2n--2 - Z Rv+2(Jk) 1 <v <n-2. 

k=O Jk 

This is also the number of runs of v zeros. It is well known that 2n-v-2 is the 
number of specified runs in a period of an M-sequence of degree n . In addition, 
the only possible runs with v > n - 1 in an M-sequence or AM-sequence of 
degree n are the n - 1 zeros between two ones, the number of which is one, 
and n ones between two zeros, the number of which is also one. Therefore, the 
number of any particular run in a period of an AM-sequence is the same as for 
an M-sequence of the same degree if the run cannot appear in any sequences 
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belonging to families F(Jk) with k < m, and otherwise it is slightly less. The 
differences between an AM-sequence and an M-sequence with respect to R2 are 
negligibly small for all practical cases (nj > 1) . 

Golomb's randomness property R3 concerns the pair correlation function 

N-1 

(20) C(2, s) = E bibi+s, 
i=O 

where instead of the bits yi the parities 

(21) bi = b(yi) - )Y' 

are used, which obey 

(22) b(yi)b(yj) = b(yi + yj) . 

For an M-sequence, C(2, s) can only take two values: C(2, s) = 1 when s 
is a multiple of the period 2n _ I, and C(2, s) = -1/(2n - 1) otherwise. Within 
a single period, the pair correlation function of an M-sequence is single-valued 
and almost vanishes. This property follows from the fact that the sequence 

(23) {Yi' } = {Yi + Yi+s } 

obeys the same recursion as {yj}. For s = 0 (mod 2n - 1), the sequence {Yi' } 
is the all-zero sequence; otherwise, it is a translated version of the original M- 
sequence. Because of (22), the sum of parity products in (20) is just the sum 
of parities of {yi, } over a period. 

For AM-sequences a slightly more complicated property results. When s is 
not divisible by any of the periods Nj, namely 

(24) s 0 (modN), j= 1,...,m, 

then for each j the sequence 

(25) {fyk) +yis} = {Y(i)} 

is still an M-sequence of degree nj. Therefore, the sequence 

(26) {y} = } = {Z(~I) b} j=} 
is still an AM-sequence belonging to family F(Jm) . Hence, for intervals obeying 
(24) the pair correlation function is 

(27) C(2, s) = (-1)m/N, s $ 0 (modNj), j = 1,..., m, 

as follows from (18). However, if s is divisible by k of the periods Nj, 
the sum in the right-hand side of (26) consists only of m - k out of the m 
available M-sequences, and the resulting sequence belongs to F(Jk) and has 
period N(Jk) = N/N(Jk), where Jk is the complement of Jk. Replacing m 
by m - k and N by N/N(Jk), one obtains from (27) 

(28) C(2,5s)= NI)mk NjN, s = (mod ] Nj) N 
jEk jEJk 



368 DAKAI WANG AND AALDERT COMPAGNER 

Thus, there is now a whole spectrum of pair correlation values. When the 
periods of the partaking M-sequences are large, as is assumed here, the absolute 
values are all small compared with 1. Moreover, in the case of (28), the intervals 
are very large. In this modified form, randomness property R3 holds also for 
AM-sequences. 

For a simple example, consider the characteristic polynomial 

f(x) = fi(x)f2(x) = (1 + X+X2)(1 + X2+ X) = 1 +X+X5, 

with m = 2, n1 = 2, n2= 3, n = 5, N =3, N2= 7, and N = 21. In this 
case, only three of the nine terms resulting from a product of two trinomials 
survive. The two M-sequences and the resulting AM-sequence are 

fy()l) = 101101101101101101101... 

fy(2)1 = 010011 1010011 1010011 1... . 

{yi} = 11 11 10000100011001010. . . 

One sees that (1 7) is obeyed. The runs 11 11 1, 11 1 1, 0000, and 000 in {yi }, 
which can never appear in M-sequences of degree 2 and 3, occur precisely as 
often as in an M-sequence of degree 5, but the single-zero run, for instance, 
occurs two times less often because it occurs once in both {y(l) } and {y(2) }. 
Transforming {Yi} into the parity sequence 

{bi} = - ++++-+++--+ -- 

and adding the products of pairs of elements 3 or 7 positions apart, one obtains 
C(2, 3) = -1/7 and C(2, 7) = -1/3, in agreement with (28). For intervals 
other than multiples of 3 and 7, the pair correlation function always takes the 
value 1/21 as given by (27). 

To summarize, the randomness properties RI, R2, and R3 of Golomb are 
somewhat less obeyed by AM-sequences than by M-sequences, but the difference 
is negligible when the periods of the constituting M-sequences are sufficiently 
large. These results show that in the search for binary sequences that are reliable 
random number generators there is no a priori reason to exclude AM-sequences. 
To proceed further, correlations of any order and size have to be considered. 
One approach to do so is by means of the figures of merit defined by Mullen 
and Niederreiter [12], in which these correlations play an implicit but important 
role. 

4. FIGURES OF MERIT FOR REDUCIBLE POLYNOMIALS 

From tables of primitive polynomials [16, 17] it is easy to construct a re- 
ducible polynomial of a desired degree. To ensure that the m periods Nj are 
mutually prime, the factorizations of 2n - 1 by Brillhart and Selfridge [2] can 
be used. Next to the degree of the polynomial, also its number of terms q is of 
interest, as it is the order of the first-correlated set discussed in [3, 4]. When q is 
sufficiently large, say in the range of I n + n1/2, deviations from randomness are 
most likely to be due only to correlations that either are of large order or cover 
a large distance, so that the associated sequence may be called well-tempered. 

The number of terms of the resulting reducible polynomial (9) obeys 
m 

q < fiqj, 
j=1 
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TABLE 1. Figures of merit p(d) and number of terms 
q for a few reducible polynomials f(x) = fif2f3 of 
degree 32. For instance, the first three numbers, 0, 1, 4, 
indicate the polynomial fi (x) = 1 + x + X4. 

fi f2 A3 q p (2) p(3) p (4) p (5) 

0, 1,4 0,2, 11 0,3, 17 14 31 28 23 22 

0,2,5 0,3, 10 0,5, 17 11 29 26 26 23 

0, 1, 7 0, 1, 5, 6, 8 0, 3, 17 15 31 26 26 22 

0,1,4 0,1,3,4,13 0,14,15 16 28 26 24 23 

0,2,5 0,1,3,4,13 0,1,11,12,14 19 30 22 22 22 

0, 3, 7 0,2, 11 0,1, 11, 12, 14 19 30 26 26 21 

0, 1,5,6, 8 0,2, 11 0,1, 3, 4, 13 21 30 22 22 21 

0, 4,9 0,3,10 0,9, 10, 12, 13 19 31 25 25 24 

0,1,2,3,4,5,6,7,8,9,11,12,21,22,24,26,27,28,30,31,32 21 32 26 26 25 

where qj is the number of terms of fj(x). The equality sign is valid when 
no cancellations due to the restriction to the Galois field F2 occur. When the 
product is larger than 2n, cancellations will almost always cause q Z 1n . In 
the above-mentioned lists of primitive polynomials, qj is 3 or 5. If m of those 
polynomials are chosen, with 3m n, the resulting q will very likely be in 
the favorable range. 

Because of the time-consuming calculations involved, the practical use of the 
figures of merit p(d) is restricted to polynomials of rather low degree, below 
n 100. Roughly speaking, if the figure of merit p(d) of a characteristic 
polynomial is not much less than n, the pseudorandom numbers produced 
from its SR-sequence will pass the d-dimensional serial test. For the so-called 
universally optimal primitive polynomials of degree n < 32 that have good 
figures of merit p0(d) for d = 2 to 5, as given in [1], the number of terms q 
is indeed always in the desirable range. These optimal polynomials were found 
by an exhaustive search, in which the computational task is so heavy that the 
search had to stop at n = 32. Conversely, when q is large, as is usually the case 
for reducible polynomials, the figures of merit p(d) may in general be expected 
to be reasonably large a priori. 

To demonstrate this, several reducible polynomials of degree 32 and their 
figures of merit p(d) for d = 2 to 5 are listed in Table 1. The selection of the 
factors fj(x) was rather arbitrary, though occasionally somewhat lower figures 
of merit were encountered. The last line of Table 1 is the universally optimal 
primitive polynomial of degree 32 given in [1]. 

For degrees n < 127, primitive polynomials that are optimal in terms of po(2) 
only (then, p(2) should be equal to n or n + 1), were determined by Mullen 
and Niederreiter [12]. In Table 2, several examples are shown of reducible 
polynomials with n varying from 40 to 1 10. The results obtained for po(2) are 
only slightly less than n. 
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TABLE 2. Examples of reducible polynomials up to de- 
gree n = 1 10, together with the number of terms q in 
f(x) = f f2f2 and the figure of merit p(2) . A com- 
parison of n, q, and Q qlq2q3 shows the effect of 
cancellations. 

n fi f2 A Q q p(2) 

40 0,7,10 0,9,11 0,13,14,18,19 45 21 39 

50 0, 1,2, 13, 14 0, 11, 17 0, 13, 14, 18, 19 75 27 47 

60 0,11,17 0,17,20 0,22,23 27 19 57 

70 0,13,14,18,19 0,21,22 0,27,29 45 25 67 

80 0,13, 14, 18, 19 0,14, 15, 29, 30 0,18, 31 75 29 77 

90 0,7,18 0,27,29 0,37,38,52,53 45 41 87 

100 0,11, 13, 14, 16 0,18,31 0,37,38, 52,53 75 39 97 

110 0,1,22 0,38,41 0,42,47 27 25 107 

The data in Tables 1 and 2 show that the choices for m and for the factors 
in (9) are not critical indeed; below n I100, already for m = 3 the number 
of terms q takes care of itself and the resulting figures of merit have acceptable 
values. Occasionally, particular choices may occur for which some figures of 
merit would be too small, but in general this is not very likely to happen. For 
very high degrees, n > 1000 as required in large-scale Monte Carlo work, prim- 
itive polynomials with many terms, for which one could expect good figures of 
merit if one could calculate them, are difficult to find, and their implementation 
in soft- or hardware would not be easy. However, characteristic polynomials 
with 3m terms for the production of AM-sequences are easily found by multi- 
plying m primitive trinomials, for instance selected from those with Mersenne 
exponent degrees given by Zierler [16]. Since m does not need to be large, they 
can also be easily implemented. 

5. THE CORRELATION COEFFICIENTS OF AM-SEQUENCES 

By means of ensemble theory, a complete hierarchy of correlation coefficients 
for binary sequences can be defined [3-5]. To discuss the randomness of a given 
sequence, the scanning ensemble, consisting of that sequence and all its trans- 
lated versions with equal weights, is most suitable. The correlation coefficient 
in that ensemble for a fixed set 

(29) I(q, s) = {il, i2, ,iq}, 0 il < i2 < ... < iq < N- 1, 

is defined by 

I N-1 

(30) CI(q, S) = 
N E: 

Z bj+i. 
j=o iEI 

The pair correlation function C(2, s) discussed in ?3 is equal to CI(2,s). The 
set I(q, s) is mainly characterized by its order, the number q of elements in 
I, and its size 

(31) s = iq - ii . 
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Notice that q is used here in a slightly more general sense than in the last 
section, where it was only the order of the first-correlated set (which is equal to 
the number of terms of the characteristic polynomial; see [3]). 

For each set I(q, s) a polynomial 

(32) g(x) = Xil + Xi2 +... + Xiq 

can be constructed. Because of 

(33) { ZYi+}} = g(D){yj} = {0} i-* g(x) = 0 (modf(x)), 

the necessary and sufficient condition for a set to be completely correlated is 
that its polynomial g(x) can be divided by the minimal polynomial f(x) of 
the SR-sequence. For the AM-sequences of F(Jm) we thus have 

(34) CI(q,s) = 1, gcd(g(x), f(x)) = f(x) 
where "gcd" stands for greatest common divisor. 

When g(x) is divisible by some of the factors of f(x) , the resulting sequence 
in the left-hand side of (33) belongs to the family F(Jk). Then one has 

(_ 1)m-k 
(35) CI(q,s) N f ) l Nj, gcd(g(x), f(x))= fjf1(x). 

jEJk iEJk 

In fact, this is a general expression for CI, valid for all possible k. The case 
k = m refers to the completely correlated sets in (34), and the case k = 0 
refers to the almost uncorrelated sets with gcd(g(x), f(x)) = 1, for which 
C1 is equal to (-1)/N. The different cases of I(q, s) can be referred to as 
k-correlated sets. 

Now consider the two conservation laws, 

(36) (C0) = E C =0, 

(37) (Ci2) 1 C2 
I 

which in [3] were shown to be valid for any periodic binary sequence. Especially 
the strong conservation law (37) tells us that if a periodic sequence has small 
absolute correlation values for some sets, it must have large values for other 
sets. Tests for randomness that do not take this into account tend to have an 
ambiguous character. 

To find the contributions from each of the k-correlated sets to the sum of 
squared correlation coefficients, the number A(Jk) of k-correlated sets within a 
period is needed. If il in (29) is equal to 0, the set I(s, q) is called a basic set. 
According to (30), all translated versions of a basic set have the same correlation 
coefficient. For a given Jk , the first basic k-correlated set always corresponds to 
the minimal polynomial of the sequences that belong to F(Jk) . Multiplication 
by any polynomial m(x) yields a new basic k-correlated set of size s, provided 
that m(O) $& 0 and that the degree of m(x) is equal to s - n (Jk), with 

(38) n( Jk) = Z n} . 

iEJk 
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Therefore, the number of basic k-correlated sets of size s is 

(39) Gs(Jk) = { 2s-n(Jk)-1 I ; > n(Jk) + I 

When all the translated versions of these basic k-correlated sets within a period 
N are counted, irrespective of their size, one obtains 

(40) B(Jk) = 2N-n(Jk)- 1, 

which differs from A(Jk) because some of the k-correlated sets produced so 
far will also be k'-correlated sets with k' = k + 1, ... , m, if the polynomial 
m(x) can be divided by factors fj(x) with j not belonging to Jk . Thus, (40) 
does not measure the exact number of k-correlated sets except for k = m, in 
which case 

(41) A(Jm) = B(Jm) = 2N-n - 1 

is the number of completely correlated sets within one period. However, the 
numbers A(Jk) for k :# m can be derived from B(Jk) by iteration: 

m 

(42) A(Jk) = B(Jk) - E E A(Ji), 
i=k+l J1DJk 

starting from (40) with k = m - 1. The result is 

(43) A(Jk) = 2fN-N/ UI NJ, k = O,1, ..., m - 1. 
IeJk 

This relation is even valid for k = m, if the empty set I = 0 with C0 = 1 is 
included into the class of m-correlated sets (increasing A(Jm) by 1). 

Using (35), (41), and (43), one may verify 

m 

(44) ZA (Jk)CI(jk) + 1 = 0, 
k=O Jk 

m 2N 

(45) ZZA(Jk)C2Jk + 1 N 
k=O Jk 

in agreement with the conservation laws. From (35), (41), and (43) one also 
finds the following relations: 

(46) A(JO) > EA(Ji) > ?> A(Jm), 
JI 

(47) A(Jo)C20) < E A(JC) ?"?A(Jm)CAJ2), 
J1 

where I(Jk) denotes a k-correlated set I(q, s) . In fact, the contributions to the 
sum of squared correlation coefficients are entirely dominated by the completely 
correlated sets I(Jm) because of 

m-1 

(48) E E A(Jk)C2 = 2N-n(2n - N)/N << 2N-n 

k=O Jk 
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Therefore, the k-correlated sets with k = 0, ... , m - 1 have negligible effects 
on the randomness properties of AM-sequences. 

An analysis of the m-correlated sets with CI(q,s) = 1 for the most relevant 
region of q and s will be the subject of a following paper. 

6. CONCLUSIONS 

For characteristic polynomials of a given degree and with a similar number 
of terms, the randomness properties of AM-sequences resemble those of M- 
sequences. Reducible polynomials are very promising as pseudorandom number 
generators, and have great practical advantages. 
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see J. R. Heringa, H. W. J. Blote and A. Compagner, New primitive trinomials of 
Mersenne-exponent degrees for random-number generation, Internat. J. Modern 
Phys. C3, No. 3 (June 1992), 561-564. 
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